Artificial intelligence promises to transform — and indeed, has already transformed — entire industries, from civic planning and health care to cybersecurity. But privacy remains an unsolved challenge in the industry, particularly where compliance and regulation are concerned.

Recent controversies put the problem into sharp relief. The Royal Free London NHS Foundation Trust, a division of the U.K.’s National Health Service based in London, provided Alphabet’s DeepMind with data on 1.6 million patients without their consent. Google — whose health data-sharing partnership with Ascension became the subject of scrutiny in November — abandoned plans to publish scans of chest X-rays over concerns that they contained personally identifiable information. This past summer, Microsoft quietly removed a data set (MS Celeb) with more than 10 million images of people after it was revealed that some weren’t aware they had been included.

Separately, tech giants including Apple and Google have been the subject of reports uncovering the potential misuse of recordings collected to improve assistants like Siri and Google Assistant. In April, Bloomberg revealed that Amazon employs contract workers to annotate thousands of hours of audio from Alexa-powered devices, prompting the company to roll out user-facing tools that quickly delete cloud-stored data.

Increasingly, privacy isn’t merely a question of philosophy, but table stakes in the course of business. Laws at the state, local, and federal levels aim to make privacy a mandatory part of compliance management. Hundreds of bills that address privacy, cybersecurity, and data breaches are pending or have already been passed in 50 U.S. states, territories, and the District of Columbia. Arguably the most comprehensive of them all — the California Consumer Privacy Act — was signed into law roughly two years ago. That’s not to mention the Health Insurance Portability and Accountability Act (HIPAA), which requires companies to seek authorization before disclosing individual health information. And international frameworks like the EU’s General Privacy Data Protection Regulation (GDPR) aim to give consumers greater control over personal data collection and use.

AI technologies have not historically been developed with privacy in mind. But a subfield of machine learning — privacy-preserving machine learning — seeks to pioneer approaches that might prevent the compromise of personally identifiable data. Of the emerging techniques, federated learning, differential privacy, and homomorphic encryption are perhaps the most promising.

Neural networks and their vulnerabilities

The so-called neural networks at the heart of most AI systems consist of functions (neurons) arranged in layers that transmit signals to other neurons. Those signals — the product of data, or inputs, fed into the network — travel from layer to layer and slowly “tune” the network, in effect adjusting the synaptic strength (weights) of each connection. Over time, the network extracts features from the data set and identifies cross-sample trends, eventually learning to make predictions.

Neural networks don’t ingest raw images, videos, audio, or text. Rather, samples from training corpora are transformed algebraically into multidimensional arrays like scalars (single numbers), vectors (ordered arrays of scalars), and matrices (scalars arranged into one or more columns and one or more rows). A fourth entity type that encapsulates scalars, vectors, and matrices — tensors — adds in descriptions of valid linear transformations (or relations).

In spite of these transformations, it’s often possible to discern potentially sensitive information from the outputs of the neural network. The data sets themselves are vulnerable, too, because they’re not typically obfuscated, and because they’re usually stored in centralized repositories that are vulnerable to data breaches.

By far the most common form of machine learning reverse engineering is called a membership inference attack, where an attacker — using a single data point or several data points — determines whether it belonged to the corpus on which a target model was trained. As it turns out, removing sensitive information from a data set doesn’t mean it can’t be re-inferred, because AI is exceptionally good at recreating samples. Barring the use of privacy-preserving techniques, trained models incorporate compromising information about whatever set they’re fed.

In one study, researchers from the University of Wisconsin and the Marshfield Clinic Research Foundation were able to extract patients’ genomic information from a machine learning model that was trained to predict medical dosage. In another, Carnegie Mellon and University of Wisconsin-Madison research scientists managed to reconstruct specific head shot images from a model trained to perform facial recognition.

A more sophisticated data extraction attack employs generative adversarial networks, or GANs — two-part AI systems consisting of generators that produce samples and discriminators that attempt to distinguish between the generated samples and real-world samples. They’re trained to generate samples closely resembling those in the original corpus without having access to said samples and by interacting with the discriminative deep neural network in order to learn the data’s distribution.

In 2017, researchers demonstrated that GANs could be trained to produce prototypical samples of a private set, revealing sensitive information from this set. In another study, a team used GANs to infer the samples that were used to train an image-generating machine learning model, with up to a 100% success rate in a “white-box” setting where they had access to the target model’s parameters (e.g., the variables a chosen AI technique uses to adjust to data).

Fortunately, there’s hope in the form of approaches like federated learning and differential privacy.

Federated learning…

Read The Full Article

Leave a Reply

Check Also

Taming the AI Beast: A Risk-Based Guide to Smarter AI Governance

In today’s digital age, Artificial Intelligence (AI) is revolutionizing industries, …